A GRILIFE EXTENSION

Residential Customer Characterization for Urban Water Conservation Planning

Aubry Wolff¹, Diane E. Boellstorff², and T. Allen Berthold³

¹ Former Graduate Assistant, Department of Soil and Crop Sciences, Texas Water Resources Institute

²Associate Professor and Extension Water Resources Specialist

³ Research Scientist, Texas Water Resources Institute

The Texas A&M University System

Acknowledgments

Anna Faloon, Ph.D. student in the Department of Civil Engineering at Texas A&M University, developed the method used in this publication for categorizing water usage.

For more information, download ESC-043 *Evaluating Customer Water Use to Create Effective Conservation Programs,* Texas A&M AgriLife Extension Service, http://www.agrilifebookstore.org, or contact Diane Boellstorff at dboellstorff@tamu.edu.

Figures

Figure 1. Phases in the utility customer characterization process	•••	1
Figure 2. Graphical representation of the data in Table 4, <i>Seasonal Use</i> section only	. 1	4

Tables

Table 1.	Aggregate Use distribution by customer category assigned by the sample utility 11
Table 2.	Distribution of available property <i>Year Built</i> compared to <i>Aggregate Use</i> , and the <i>Average Annual Use per Account</i> both before and after 1992, and in each decade for residential accounts (17,739)
Table 3.	Distribution of available property <i>Assessed Value</i> compared to <i>Aggregate Use</i> and the <i>Average Annual Use per Account</i> in each home value range for residential accounts (17,768)
Table 4.	Assumed annual outdoor and indoor use for all residential accounts (17,774)
Table 5.	Residential levels of use, in gallons, calculated from seasonal and winter percentiles for all accounts in 2009. Seasonal and winter use is assumed to represent outdoor and indoor use, respectively
Table 6.	Number of Accounts, and Change in the Number of Accounts categorized by cross-comparison of Seasonal and Winter Use levels
Table 7.	Annual Use and Annual Use per Account (gallons) for residential accounts in Table 6 17
Table 8.	Aggregate Use and Average Annual Use per Account (gallons) for residential accounts in Table 6

Boxes

Box 1. Definition: Customer Characterization		1
Box 2. Importance of Gather Data		2
Box 3. Sample Utility Data Set: Step-by-Step Preparation Process		6
Box 4. Sample Utility Data Set: Continued Step-by-Step Preparation Process		8
Box 5. Table Calculations: Tables 1–6	1	0
Box 6. Table Calculations: Tables 7–8	1	1

Purpose of customer characterization

The goal of urban water conservation planning is to save the most water at the lowest operational cost. Completing a *customer characterization* helps a utility learn how customers within the service area use water and what "normal" usage trends look like for each customer category. This information also helps direct education efforts about more efficient wateruse practices to the biggest water-users.

Using customer characterization, utilities can effectively and efficiently meet conservation goals. While not intended to recommend specific best management practices (BMPs), this guide

Box 1. Customer characterization: Categorizing customer accounts by how the amount of water they are billed for indicates trends for their individual water use.

can help utilities better understand their customers' water use and emphasize the most appropriate conservation BMPs for the service area.

The customer characterization process includes three phases: gather, prepare, and analyze data (Fig. 1). The complete process varies among utilities based on available information, time, and expertise.

Customer characterization example

To illustrate a complete customer characterization process, we applied the three phases—gather, prepare, and analyze—to an anonymous utility usage data set. Because of data availability and time constraints, the analysis included only the single-family residential data set to identify the appropriate audience for targeted conservation efforts. The step-by-step process completed for the sample data set outlines a single method, but is not the only procedure for completing a customer characterization. This process can stimulate discussion and creative thinking that benefits a utility and its customers by targeting water conservation BMPs.

In Phase I, the quantity of available data is important; the more data collected, the better-informed decisions will be. When analyzing trends over time, 3 to 5 years of complete billed-usage data is the most beneficial. However, for a realistically manageable data set, monthly consumption data shows seasonal trends and unusually high or low usage periods. You can also estimate daily usage, if desired.

Also consider the types of available information. Gather information that helps the utility understand how water is used within the service area. Available demographic and property information integrated with billed-usage data can strongly indicate trends and predict future water use among specific customer categories (Box 2).

Box 2. Important of Gathered Data

Billed usage: Historical-usage data identifies water-use trends within a utility service area.

Property data: Property characteristics often indicate different amounts of water use, and the information is easily accessible.

Example – Accounts with a high winter average (billed-usage data) combined with a home built before 1992 (property data) may indicate older, high water-using appliances and fixtures inside the home—an opportunity for water savings.

Spatial data: While not crucial for the process outlined in this guide, spatial comparisons of water-use levels (or even water-waste violations) may provide valuable information for conservation BMP decision making.

Example — Spatial distributions of billed-usage data may highlight consistently high water use within neighborhoods, area codes, or political districts. A utility can customize conservation BMPs to target those audiences through home water audits, education, and enforcement.

Phase I: Gather Data

1.1 Where to access data

Monthly-use data is the easiest to collect for all actively metered, potable connections (open accounts) in the service area. Utility billing or information systems (IT or IS) departments can provide this information to conservation staff if it is not readily accessible. Local appraisal districts can usually provide detailed, public information for each residential property if it is not already included in the billing data.

The data are usually searchable by address and sometimes downloadable for an entire county. Useful information for each property includes:

- A unique identifier
- Year built
- Most recent appraised value
- Lot or parcel size

If not already included in the billing data, this information may be challenging to integrate with the billed-usage data set, but is worth the effort for the insight it gives about characteristics of customers with the highest billed usage. The steps for integrating data are outlined later in Phase II.

1.2 Other helpful data

The American FactFinder database (U.S. Census Bureau, 2010) is a good resource for general demographic data such as:

- Estimates of people per household (pphh)
- Income and poverty levels
- Distribution of residential structures built by decade (if individual property build-dates are not available from an appraisal district)

The Census Bureau maintains a QuickFacts Beta database containing general demographics about people, businesses, and the geography of a city. It also compares individual cities to each other and the United States as a whole. Although general, the demographic data provides reliable information regarding the types of water-users in a particular city.

Most cities and appraisal districts have spatial data available on their website or upon request. Geographical information system (GIS) data sets may include:

- Address points
- City limits
- Extraterritorial jurisdiction (ETJ) limits
- School districts
- Watershed areas
- Land use
- Municipal utility district (MUD) jurisdictions

• Streams

- Roads
- Railroads
- Subdivisions
- Reservoirs
- Buildings

To analyze spatial trends in water use, integrate demographic and billed-usage data with available GIS data. Spatial distributions of income or appraised property value may reflect consistent usage trends across multiple customer categories. For example, to maintain a low bill, lower-income customers tend to be more efficient with their water use. However, low-income customers might not fix leaks that are difficult or costly to repair. The resulting, unusually high wateruse records in concentrated low-income locations within a service area may be an indication for a utility to investigate for leaks.

Since household income is not usually included in utility billing data, separate the service area by average income within different spatial distributions, and then compare these areas to locations of any high-consumption users. Use appraised property values, typically included in appraisal district data sets, to make assumptions about income levels.

The data gathered in Phase I might not be formatted or reported in a way that is usable for comparisons or to identify trends. Phase II outlines how to combine multiple data sets into one set for analysis.

The data preparation phase takes the most time. There are several steps in this phase:

- Removing nonessential accounts
- Adding calculations for analysis
- Separating data based on customer category
- Integrating property data into the billed-usage data set

The prepared data set contains significantly fewer accounts than the original data set, but allows more accurate analysis of a sample of accounts with complete data.

2.1 Identify the types of information in the data set

Identify the amount and type of data in the billed usage before beginning any preparation or analysis. For the customer characterization process, 3 to 5 years of monthly billed-usage data is ideal. Data is usually listed in thousand-

Phase II: Prepare Data

gallons, but units of hundred-gallons, gallons, or hundred cubic feet are also common. Identify the unit in which the billed usage data is listed so the data analysis is accurate.

2.2 Remove closed accounts

Remove nonessential data so the data set is more manageable and representative of the current utility service area. Closed billing accounts may give information about historic usage trends, but from a conservation perspective, their water use no longer influences the implementation of conservation programming. Also, a closed account is no longer associated with a meter that reports water-use data. It is more effective for a utility to direct conservation efforts to account holders who will use water in the future and contribute to an aggregate reduction in water use. If there are any closed accounts (a status designated by the utility) included in the billed-usage data set, remove them from the data set.

2.3 Calculate needed data from existing billed-usage data

Because the following calculations may be compared in Phase III: Analyze Data, it is helpful to add these columns to the existing billed-usage data set for each calculation, if it is not already reported:

- Annual usage
- Annual winter (indoor) average
- Annual seasonal (outdoor) average
- Annual assumed indoor and outdoor use

(See Box 3, Step 6 for how to calculate each data type from existing data, and how to apply each one to the sample data set.)

2.4 Separate by customer category To compare data, separate the complete data into similar customer-use categories. Do not compare a residential customer to a nonresidential customer on any scale; the characteristics of these customer categories and the nature of their water use are inherently different.

2.4.1 Residential categorization

The residential category should contain only single-family residential accounts. As outlined in Box 3, you can estimate and analyze winter average (representing monthly indoor use) and seasonal average (representing monthly outdoor use) individually for single-family accounts. Multi-family properties such as apartments and duplexes sometimes contain one billed water account for multiple residences. Consider them to be in the nonresidential category since the nature of their use is more difficult to estimate.

Box 3. Sample Utility Data Set: Step-by-Step Preparation Process

Start with the original billed-usage data set in a spreadsheet program [33,885 accounts in the sample data set]:

- 1. Before making any changes, save a separate spreadsheet with all data to use for reference or to recover information.
- 2. Optional Format data into a table (Format as Table function in Excel) for easier sorting and management. If you enter a formula in the first cell of a column, the entire column will autogenerate the same formula for all cells in the same column.
- 3. Identify all columns of monthly-usage data for complete years.
 - Remove columns of monthly-usage data that were not included in the desired year range.
 - Sample Data Set—For 2009 to 2013 complete data, we used monthly usage from December 2008 to December 2013.
- 4. Identify units of monthly-billed usage.
 - Common units are gallons or thousand-gallons.
 - Sample Data Set—Monthly usage is in hundred-gallons.
- 5. Identify a column for service status that indicates whether the account is open or closed.
 - Designate this status by the utility; do not assume.
 - It is possible that the data set already contains only open accounts. If not apparent, confirm whether all accounts are open.
 - Sample Data Set—We removed all accounts that were designated as closed. [31,548 open accounts remain]
- 6. Create columns for each year for the following metrics:
 - Annual Usage [January–December summary]
 - Annual Winter (Indoor) Average [December–February Average]
 - Annual Seasonal Average [June–August Average minus Winter Average]
 - Replace negative results in this column with a zero (0) value.
 - Annual Assumed Outdoor Use [Annual Use minus (Winter Average × 12)]
 - Replace negative results in this column with a zero (0) value.
- 7. Identify the column containing customer categories.
 - Sample Data Set—We split residential and nonresidential customer-category data into separate spreadsheets so they are easier to manage. [29,118 open residential accounts remain]

2.4.2 Nonresidential categorization

2.5 Remove low-use accounts

Although nonresidential customers are more difficult to categorize (there are many different uses of water in this sector), doing so allows for an accurate comparison between the same type of water users. For example, a large-scale manufacturing customer or car wash facility will most likely have higher water-use levels than an office park. The North American Industry Classification System (NAICS) has the most complete list of categories consisting of two-to-six-digit coded categories that describe the type of use for each account.

If NAICS is not available in the billed-usage data set or other data gathered, you must categorize nonresidential users manually, and this can be a tedious step. It helps to sort users from highest to lowest annual usage and isolate a specified number of users with the highest annual usage. This allows the categorization to apply to only customer accounts that may allow the utility the biggest savings, instead of the entire data set. Complete instructions for how to characterize nonresidential accounts are not included in this guide.

Accounts sometimes have low or even zero water use and the reason for these low bills is difficult to determine. To accurately identify the characteristics of water users in the service area, remove or hide these accounts from the usable data set.

The low-use metric can differ among utilities. It is possible for a one-person, water-efficient home to use 1,500 gallons per month, or 50 gallons per person per day, so any billed usage less than 1,000 gallons per month is a safe threshold to use for removing low-use accounts.

2.6 Integrate property data

The final step of Phase II, Preparing Data, integrates the property data set with the billed-usage data set. In this step, a unique identifier for each account property links the two data sets and allows for importing additional property data (other than the property data recommended in this guide) so the utility can make additional comparisons, if desired. Once you determine the correct unique identifiers for each property, assume that the imported property data is accurate since it is linked to the unique identifier.

For purposes of the process outlined in this guide, the property data imported into the billed-usage data, using the unique identifiers, include the property year built, and the assessed home value. Box 4, Steps 3–4, outlines the specific steps we used with the sample utility data set to import the property data and ensure that it was complete and correct. Notice that account properties with duplicate or missing unique identifiers were first researched and then removed from the billed-usage data set.

Box 4. Sample Utility Data Set: Continued Step-by-Step Preparation Process Start with complete, open, residential accounts in a separate spreadsheet [29,118 accounts remain following completion of Step 7 in Box 3]:

1. Remove low-use accounts for all monthly usage data.

- Low-use threshold: less than 1,000 gallons per month
- Sample Data Set—We filtered each column December 2008 to December 2013 to show only values greater than or equal to 10 (10 hundred-gallons = 1,000 gallons).
- 2. Create columns for property information:
 - A unique identifier for each account
 - Sample Data Set—Property ID
 - Year Built
 - Most recent Assessed Property Value
 - Sample Data Set—2014 Assessed Value
- 3. Import property data from downloaded appraisal district database using a query function.
 - Import unique identifiers
 - Sample Data Set—We used a *Lookup* formula in Excel to compare full address (street number and street name only) in both billed-usage and property data sets to import Property ID.
 - Optional—We Imported a *Property Type Code* field to ensure that the property IDs are correct (to confirm all residential properties had a '*RES*' property type code, and not a property type code associated with a nonresidential account, or land).
 - Import Years Built
 - Sample Data Set—We used a Lookup formula in Excel to compare Property ID in both billed-usage and property data sets to import Year Built.
 - Import most recent Assessed Home Values
 - Sample Data Set—We used a *Lookup* formula in Excel comparing *Property ID* in both billed-usage and property data sets to import *Assessed Home Value*.
- 4. Examine accounts without individual unique identifiers.
 - Typos or abbreviations in the full address fields can interfere with the query function in the previous step that imports the property data into the billed-usage spreadsheet and shows an error instead of the desired unique identifier.
 - Sample Data Set—We removed accounts with no property ID number, or accounts that shared a property ID number with another property address (may be multi-family residences or duplexes). [17,774 accounts remain]
- 5. Continue with Phase III Conduct analyses using remaining accounts.

Phase III: Analyze Data

The analysis phase of the customer characterization process is the most important—you identify the characteristics of customers who consume the largest amount of water. The analysis can be as simple or as in-depth as the utility needs and is supported by available data (for example, the data set analyzed for this publication did not include lot size or whether an automatic sprinkler irrigation system was present).

Many characteristics can be compared to water use. For purposes of this guide, the following comparisons were made using the existing utility data set, and outlined below:

- Use distributions (by user category, year built, assessed value)
- Indoor vs. outdoor use
- Cross comparison of indoor vs. outdoor percentiles

Some water-use comparisons may not be appropriate for all customer categories. For example, because water use is the same for most single-family residential customers, it would be appropriate to compare water use on a per capita (per person) basis when comparing single-family residential accounts.

Residential water use includes indoor uses such as bathing, cleaning, cooking, and drinking, while outdoor uses can include car washing, irrigation, and outside cleaning. However, nonresidential customers use water in a different way, even when compared to each other, so normalization methods are necessary.

Normalization is as simple as comparing water usage per output. Car washes evaluate their efficiency in terms of gallons per car. Institutional, commercial, and industrial (ICI) or nonresidential customers can be analyzed based on water usage per dollar of revenue. The idea is to use terms that are comparable to each other without having to further subcategorize customers. Box 5 and Box 6 list all table calculations by table column headings.

3.1 Use distributions

Use distributions are simple comparisons that familiarize the utility with the service area. We calculated the average annual use per account as a method of normalization in order to compare individual accounts in each of the categories to each other, instead of attempting to compare aggregate usage.

The aggregate use distribution for the sample utility in Table 1 includes all open, zero, and low-use accounts, with use shown in thousand-gallons. The aggregate usage from all 5 years in the sample data set is used to compare the characteristics between the different categories as assigned by the

Box 5. Table Calculations: Tables 1–6

Listed by table column headings

Time periods for each calculation matter—annual measures unless specifically designated by *. [* can be annual measure OR aggregate measure of all years in the data set (as seen in the table)].

Table 1 – Use Distribution: Cu	Table 1 – Use Distribution: Customer Categorization							
Number of Accounts	Number of accounts in the designated category							
Percentage of Accounts	('Number of Accounts' in category \div Total 'Number of Accounts') \times 100							
Aggregate Use*	Sum of annual use for all accounts in category							
Aggregate Use Percentage	('Aggregate Use' in category \div Total 'Aggregate Use') $ imes$ 100							
Table 2 – Use Distribution: Year Built								
Number of Accounts	Number of accounts in the designated range of years built							
Percentage of Accounts	('Number of Accounts' in year range \div Total 'Number of Accounts') \times 100							
Aggregate Use*	Sum of annual use for all accounts in year range							
Aggregate Use Percentage	('Aggregate Use' in year range \div Total 'Aggregate Use') $ imes$ 100							
Average Annual Use per Account	'Aggregate Use' in year range \div Number of years of data \div 'Number of Accounts'							
Table 3 – Use Distribution: Ass	sessed Home Value							
Number of Properties	Number of accounts in the designated range of home values							
Percentage of Total Properties	('Number of Properties' in value range \div Total 'Number of Properties') $ imes$ 100							
Aggregate Use*	Sum of annual use for all accounts in home value range							
Aggregate Use Percentage	('Aggregate Use' in value range \div Total 'Aggregate Use') \times 100							
Average Annual Use per Account	'Aggregate Use' in value range \div Number of years of data \div 'Number of Properties'							
Table 4 – Outdoor and Indoor	Use							
Annual Indoor Use	Annual winter average for all accounts \times 12 [months in a year]							
Annual Outdoor Use	Sum of annual use for all accounts — 'Annual Indoor Use'							
Seasonal Indoor Use	Annual winter average for all accounts $ imes$ 3 [months during summer season]							
Seasonal Outdoor Use	Sum of use from June to August for all accounts — 'Seasonal Indoor Use'							
Percentages	(Annual Indoor Use ÷ Sum of annual use for all accounts) × 100 (Annual Outdoor Use ÷ Sum of annual use for all accounts) × 100							
Table 5 – Usage Level Designa	itions (Use only one year of data to determine levels.)							
Seasonal Maximum	Percentiles of seasonal use average (10th, 25th, 50th, 75th, 90th, and maximum value)							
Seasonal Minimum	Level 1: Minimum seasonal average; Level 2+: 'Seasonal Max' in Level above + 1							
Winter Maximum	Percentiles of winter use average (10th, 25th, 50th, 75th, 90th, & Maximum value)							
Winter Minimum	Level 1: Minimum winter average; Level 2+: 'Winter Max' in Level above + 1							
Table 6 – Cross-Comparison of	of Usage Levels							
Number of Accounts	Number of accounts in a given seasonal AND winter usage level							
Change*	Difference in 'Number of Accounts' over time							

Box 6. Table Calculations: Tables 7–8						
Table 7 – Annual Use (1-Y	ear Periods)					
Annual Use	Sum of use for all accounts in a given seasonal AND winter usage level for the given year					
A	nnual Use Per Account (1-Year Periods)					
Annual Use per Account	'Annual Use' in level ÷ 'Number of Accounts' in level [Table 6]					
Baseline Indoor Use (blue line)	Persons per household $ imes$ 60 gallons/person/day $ imes$ 365 days/year					
Average Indoor Use (red line)	Utility Average Winter Average \times 12 months/year					
Table 8 – Aggregate Use	(5-Year Period)					
Aggregate Use	Sum of 'Annual Use' for all years in level [Table 7]					
Avera	Average Annual Use Per Account (5-Year Period)					
Average Annual Use per Account	Average of the 'Annual Use per Account' in all years [Table 7]					
Baseline Indoor Use (blue line)	Persons per household $ imes$ 60 gallons/person/day $ imes$ 365 days/year					

Table 1. Distribution of Aggregate Use by customer category assigned by the sample utility*Heat mapping (gradient color scheme) provides a visual representation of low (green) to high (red)water use totals in each category.

	Accounts	Accounts	2009–2013	2009–2013
Description	#	%	(1,000 gal)	%
Residential	27,597	87.48%	15,695,281	47.62%
Municipal Utility District	34	0.11%	5,481,213	16.63%
Commercial	1,317	4.17%	4,494,148	13.64%
Commercial Irrigation	564	1.79%	2,841,524	8.62%
Apartment	215	0.68%	0.68% 2,261,232	
County	169	0.54%	937,189	2.84%
Outside City	1,521	4.82% 882,865		2.68%
Government	76	0.24%	300,977	0.91%
Fire Hydrant (Construction)	38	0.12%	11,040	0.03%
Industrial	6	0.02%	31,720	0.10%
Residential Irrigation	11	0.03%	23,079	0.07%
Total	31,548		32,960,268	

utility. The percentage of accounts compared to the percentage of use is interesting since it illustrates the largest water users within the utility service area.

Table 2 shows the distribution of residential property year built compared to average annual use per account. The first two rows of the table show properties built before and after 1992. In that year, the Energy Policy Act of 1992 established low wateruse standards for both residential and nonresidential appliances, after which building codes were required to comply with these standards. It helps to be aware of the date these standard were adopted for the location you are working with, as well as the number of properties built after the standards were established, because some specific BMPs would already be implemented.

Table 3 compares assessed home value to the average annual use per account. In the sample utility data set, it is clear that the average use per account increases when home value increases.

near mapping (gradient color seneme) provides a visual representation of low (green) to high (rea) use per account.							
Year Built	Accounts #	Accounts %	2009–2013 Aggregate use (gallons)	2009–2013 Aggregate use %	Average annual use per account (gallons)		
1992 and prior	5,569	33.16%	3,265,906,200	27.62%	103,412		
After 1992	12,170	72.46%	8,558,430,100	72.38%	126,830		
Total	17,739		11,824,336,300				
≤1900	3	0.02%	2,281,700	0.02%	152,113		
1901–1910	6	0.04%	4,636,900	0.04%	154,563		
1911–1920	5	0.03%	2,576,900	0.02%	103,076		
1921–1930	11	0.07%	6,013,800	0.05%	109,342		
1931–1940	33	0.20%	14,051,000	0.12%	85,158		
1941–1950	34	0.20%	14,675,300	0.12%	86,325		
1951–1960	27	0.16%	14,623,000	0.12%	108,319		
1961–1970	56	0.33%	32,074,400	0.27%	114,551		
1971–1980	2,006	11.94%	1,217,849,600	10.30%	121,421		
1981–1990	2,810	16.73%	1,559,606,400	13.19%	111,004		
1991–2000	6,396	38.08%	4,362,166,200	36.89%	136,403		
2001–2010	6,343	37.77%	4,583,876,700	38.77%	144,533		
≥2011	9	0.05%	9,904,400	0.08%	220,098		
Total	17,739		11,824,336,300				

per Account both before and after 1992, and in each decade for residential accounts (17,739) *Heat mapping (aradient color scheme) provides a visual representation of low (areen) to high (red) use per account.

Table 2. Distribution of available property Year Built compared to Aggregate Use, and the Average Annual Use

3.2 Indoor use compared to outdoor use

Using information in Box 3, we calculated the assumed winter average of all residential accounts to determine the indoor use, and then subtracted indoor use from annual use to determine the outdoor use (Table 4).

The seasonal use portion of Table 4 is of particular interest because it fairly compares outdoor and indoor use for residential accounts in summer months (June to August) where outdoor use is assumed to occur more frequently. Although outdoor and indoor annual use helps determine maximumuse trends, it inaccurately compares the two. Outdoor use does not occur year-round, but indoor use is assumed to be year-round and shows a larger percentage of use (Fig. 2). It is interesting that the geographical location of the example utility experienced drought conditions in 2011, leading to higher outdoor use, especially in the summer months.

 Table 3. Distribution of available property Assessed Value compared to Aggregate Use and the Average

 Annual Use per Account in each home value range for residential accounts (17,768)

 *Heat mapping (gradient color scheme) provides a visual representation of low (green) to high (red) use per account.

2014 Assessed Home Value	Properties #	Total properties %	2009–2013 Aggregate use (gallons)	2009–2013 Aggregate use %	Average annual use per account (gallons)
Less than \$50,000	13	0.07	5,536,800	0.05	85,182
\$50,000 to \$99,999	202	1.14	81,023,900	0.68	80,222
\$100,000 to \$149,999	5,002	28.15	2,272,199,800	19.19	90,852
\$150,000 to \$199,999	5,485	30.87	3,017,862,300	25.49	110,041
\$200,000 to \$299,999	4,361	24.54	3,330,586,600	28.13	152,744
\$300,000 to \$499,999	2,579	14.51	2,913,352,300	24.61	225,929
\$500,000 to \$999,999	125	0.70	221,251,800	1.87	354,003
\$1,000,000 or more	1	0.01	2,673,000	0.02	534,600
Mean Value	\$207,601	Total	11,844,486,500		

Table 4. Assumed annual outdoor and indoor use for all residential accounts (17,774)

Aggregate assumed distribution	Annual use (gallons)	Aggregate assumed distribution	Seasonal use Jun–Aug (gallons)	Percentage
2009 Outdoor	748,223,700	2009 Outdoor	521,371,700	55.14%
2009 Indoor	1,618,737,000	2009 Indoor	424,111,400	44.86%
2010 Outdoor	911,023,800	2010 Outdoor	408,263,200	55.35%
2010 Indoor	1,267,888,100	2010 Indoor	329,395,600	44.65%
2011 Outdoor	1,328,372,100	2011 Outdoor	679,829,400	63.83%
2011 Indoor	1,500,144,300	2011 Indoor	385,196,300	36.17%
2012 Outdoor	1,049,008,100	2012 Outdoor	505,920,200	60.17%
2012 Indoor	1,300,963,600	2012 Indoor	334,841,900	39.83%
2013 Outdoor	624,016,400	2013 Outdoor	340,739,300	46.36%
2013 Indoor	1,499,686,400	2013 Indoor	394,183,300	53.64%

Figure 2. Graphical representation of the data in Table 4, Seasonal Use section only

3.3 Cross-comparison of indoor and outdoor use levels

To categorize residential accounts into groups of similar use, we determined usage levels by calculating percentiles of seasonal (outdoor) and winter (indoor) use from residential billed usage in 2009. For the sample data set, 2009 was the baseline year because it was the first year billed-usage data was gathered, and it was the first year that the utility participated in conservation programming. Table 5 shows the levels of use that was used for analysis. The maximum seasonal use for the 10th percentile was 300 gallons, meaning 10 percent of accounts in the 2009 data set used 300 gallons or less, outdoors, during the summer months. These ranges were used to compare data for the subsequent years in the data set.

Table 5. Residential levels of use, in gallons, calculated from seasonal and winter percentiles for all accounts in 2009. Seasonal and winter use is assumed to represent outdoor and indoor use, respectively

. .

Monthly Usage Levels (gallons)									
Levels	Seasonal minimum	Seasonal maximum	Winter minimum	Winter maximum	Data set percentile				
1	0	300	1,101	3,267	10th				
2	301	2,742	3,268	4,542	25th				
3	2,743	7,367	4,543	6,400	50th				
4	7,368	13,933	6,401	9,367	75th				
5	13,934	22,633	9,368	14,100	90th				
6	22,634	183,467	14,101	98,333	MAX				

Table 6 is a cross-comparison of the levels from ranges of use in Table 5. The set of tables in the left column shows the number of accounts in each group. In 2009, 1,257 accounts had seasonal use between 2,743 and 7367 gallons, and winter use between 4,543 and 6,400 gallons.

The set of tables in the right column illustrates the cumulative 5-year change in the number of accounts, as well as the 1-year changes between each of the 5 years in the data set. A positive change in the direction of level 1 for both seasonal and winter use indicates that accounts are reporting lower water use, as seen more predominantly in the 1-year change in 2009–2010, and 2011–2012.

Table 7, the final piece of Phase III, helps the utility determine which audience to target with conservation BMPs. The

Table 6. *Number of Accounts,* and *Change in Number of Accounts* categorized by cross-comparison of seasonal and winter use levels

*Heat mapping (gradient color schemes) provide a visual representation of low (green) to high (red) number of accounts in each category, and an increase (red) and decrease (blue) in number of accounts between each year.

			Nu	umber o	f Accour	nts					5-Yea	ar Chang	e 2009-	-2013	
	2009 Winter							2009		Winter					
	Levels	1	2	3	4	5	6		Levels	1	2	3	4	5	6
	1	149	224	348	383	280	401		1	335	370	413	366	166	14
nal	2	478	514	739	558	233	137	hal	2	283	377	340	268	113	2
1501	3	549	840	1257	1062	506	244	1501	3	-6	-54	-79	24	42	-8
Sec	4	366	616	1203	1223	708	316	Sec	4	-88	-126	-402	-347	-127	-74
	5	161	315	582	763	540	303		5	-29	-112	-174	-271	-169	-111
	6	83	148	334	457	381	372		6	-58	-63	-173	-250	-202	-190

	2010		Winter							
	Levels	1	2	3	4	5	6			
	1	365	461	681	704	399	255			
lal	2	779	929	1072	723	225	66			
ISOI	3	662	985	1299	948	294	82			
Sec	4	496	737	1096	828	262	79			
	5	260	378	687	494	174	66			
	6	135	221	355	333	167	76			

	2010		1-Yea	r Chang Wir	je 2009– oter	2010	
	Levels	1	2	3	4	5	6
	1	216	237	333	321	119	-146
IDL	2	301	415	333	165	-8	-71
ISOI	3	113	145	42	-114	-212	-162
Sec	4	130	121	-107	-395	-446	-237
	5	99	63	105	-269	-366	-237
	6	52	73	21	-124	-214	-296

											1-Yea	ar Chang	je 2010–	2011	
	2011			Wir	nter				2011			Wir	nter		
	Levels	1	2	3	4	5	6		Levels	1	2	3	4	5	6
	1	188	247	350	342	232	222		1	-177	-214	-331	-362	-167	-33
lar	2	424	475	597	446	170	68	la l	2	-355	-454	-475	-277	-55	2
ISOI	3	553	694	1006	761	350	144	ISOL	3	-109	-291	-293	-187	56	62
Sec	4	457	739	1136	1055	488	198	Sec	4	-39	2	40	227	226	119
	5	283	548	902	909	529	189		5	23	170	215	415	355	123
	6	170	341	690	871	574	424		6	35	120	335	538	407	348

											1-Yea	ar Chang	ge 2011–	2012	
	2012			Wir	nter				2012			Wir	nter		
	Levels	1	2	3	4	5	6		Levels	1	2	3	4	5	6
	1	321	357	515	450	237	206		1	133	110	165	108	5	-16
lar	2	676	757	846	509	169	51	lar	2	252	282	249	63	-1	-17
asoi	3	735	960	1216	864	331	104	asol	3	182	266	210	103	-19	-40
Se	4	564	810	1230	934	428	114	Se	4	107	71	94	-121	-60	-84
	5	347	515	765	641	286	111		5	64	-33	-137	-268	-243	-78
	6	150	282	478	436	233	146		6	-20	-59	-212	-435	-341	-278
												~			
	2012			Wir	ator				2012		1-Yea	ar Chang	ge 2012-	2013	
	2013	1	2	Wir	nter	F	c		2013	1	1-Yea	ar Chang Wir	ge 2012- nter	2013	c
	2013 Levels	1	2	Wir 3	nter 4	5	6		2013 Levels	1	1-Yea 2	ar Chang Wir 3	ge 2012– nter 4	2013	6
	2013 Levels 1	1 484	2 594	Wir 3 761	nter 4 749	5 446	<mark>6</mark> 415		2013 Levels 1	1 163	1-Yea 2 237	ar Chan <u>c</u> Wir 3 246	ge 2012- nter 4 299	2013 5 209	6 209
nal	2013 Levels 1 2	1 484 761	2 594 891	Wir 3 761 1079	nter 4 749 826	5 446 346	6 415 139	nal	2013 Levels 1 2	1 163 85	1-Yea 2 237 134	ar Chang Wir 3 246 233	ge 2012- nter 4 299 317	2013 5 209 177	6 209 88
asonal	2013 Levels 1 2 3	1 484 761 543	2 594 891 786	Wir 3 761 1079 1178	nter 4 749 826 1086	5 446 346 548	6 4 15 139 236	asonal	2013 Levels 1 2 3	1 163 85 -192	1-Yea 2 237 134 -174	ar Chang Wir 3 246 233 -38	ge 2012- nter 4 299 317 222	2013 5 209 177 217	6 209 88 132
Seasonal	2013 Levels 1 2 3 4	1 484 761 543 278	2 594 891 786 490	Wir 3 761 1079 1178 801	nter 4 749 826 1086 876	5 446 346 548 581	6 415 139 236 242	Seasonal	2013 Levels 1 2 3 4	1 163 85 -192 -286	1-Yea 237 134 -174 -320	ar Chang Wir 3 246 233 -38 -429	ge 2012- nter 4 299 317 222 -58	2013 5 209 177 217 153	6 209 88 132 128
Seasonal	2013 Levels 1 2 3 4 5	1 484 761 543 278 132	2 594 891 786 490 203	Wir 3 761 1079 1178 801 408	4 749 826 1086 876 492	5 446 346 548 581 371	6 415 139 236 242 192	Seasonal	2013 Levels 1 2 3 4 5	1 163 85 -192 -286 -215	1-Yea 237 134 -174 -320 -312	ar Chang Wir 246 233 -38 -429 -357	ge 2012- nter 4 299 317 222 -58 -149	2013 5 209 177 217 153 85	6 209 88 132 128 81

Table 6 continued

table shows the summary of annual usage for all account groups that were categorized in Table 6. The account group in Level 4 of both seasonal and winter use tends to show the largest use, especially when looking at the aggregate use for all 5 years in Table 8. This group represents the largest user of water within the residential category. Evaluate the characteristics of this group and use the integrated billed-usage and property data set to determine which BMPs will best encourage the group to reduce their water use. You can include other high water-consuming groups in the BMP implementation or identify more appropriate BMPs for differing characteristics.

Table 7 and Table 8 show a baseline metric (blue line) that represents a defining level of efficient water use in the sample utility service area. The goal is for the water-use amount for a larger number of accounts to stay below this line. To calculate individual utility baseline metrics, use the number of persons per household determined on an individual service area basis and the national median indoor use per person, 60 gpcd, determined by a residential water-use study funded by the Water Research Foundation.

Table 7 also offers an average indoor use metric (red line) to compare actual (red line) to desired (blue line) indoor usage. Calculate the average indoor usage by using the average of the winter average of each account in the billed-usage data set.

Baseline indoor use (blue line) = 2.96 pphh*60 gpcd*365 d/yr = 64,824 gal/acct/year; average indoor use (red line) = Avg, Winter Avg Table 7. Annual Use and Annual Use per Account (gallons) for residential accounts in Table 6

*Heat mapping (gradient color scheme) provides a visual representation of low (green) to high (red) water use totals in each category. [gal/m]*12 m/yr

	Level I 2 3 4 5 0 Level I 2 3 4 5 0		2009		c	ίΜ ζ	inter	L	,		6003		•	Min	ter	L	`
1 4,667,400 9,915,900 21,059,800 30,857,100 31,202,600 78,958,900 1 31,325 44,267 60,517 80,567 111,438 196,9		jри	2	30,296,300	28,264,100	53,387,500	53,585,800	30,283,400	28,158,900	וטן	2	63,381	54,989	72,243	96,032	129,972	205,53
1 4,667,400 9,915,900 21,059,800 30,857,100 31,202,600 78,958,900 1 31,325 44,267 60,517 80,567 111,438 196,9 2 30,296,300 28,264,100 53,387,500 53,585,800 30,283,400 28,158,900 28,158,900 63,381 54,989 72,243 96,032 129,972 205,5	2 30,296,300 28,264,100 53,387,500 53,585,800 30,283,400 28,158,900 2 63,381 54,989 72,243 96,032 129,972 205,55	osp	m	30,047,000	59,356,300	109,990,400	118,632,300	75,135,600	54,706,700	IOSD	m	54,730	70,662	87,502	111,706	148,489	224,20
1 4,667,400 9,915,900 21,059,800 31,202,600 31,205,800 31,202,600 78,958,900 7 44,267 60,517 80,567 11,438 196,9 2 30,296,300 28,264,100 53,387,500 53,585,800 30,283,400 28,158,900 2 63,381 54,989 72,243 96,032 129,972 205,5 3 30,047,000 59,356,300 118,632,300 75,135,600 54,706,700 54,706,700 97,052 87,502 111,706 148,489 24,23	2 30,296,300 28,264,100 53,387,500 53,585,800 30,283,400 28,158,900 28,158,900 28,381 54,989 72,243 96,032 129,972 205,53 8 3 30,047,000 59,356,300 109,990,400 118,632,300 75,135,600 54,706,700 97,730 70,662 87,502 111,706 148,489 224,20	əς	4	29,508,600	58,129,500	134,664,600	166,685,100	120,909,300	78,967,100	əς	4	80,625	94,366	111,941	136,292	170,776	249,89
1 4,667,400 9,915,900 21,059,800 31,202,600 31,202,600 78,958,900 71,315 44,267 60,517 80,567 11,438 196,9 2 30,296,300 28,264,100 53,387,500 53,585,800 30,285,800 28,158,900 28,158,900 28,158,900 28,158,900 28,158,900 28,158,900 28,158,900 28,158,900 28,158,900 28,158,900 28,158,900 28,158,900 28,158,900 28,178 72,243 96,032 129,972 205,5 3 30,047,000 59,356,300 18,632,300 75,135,600 54,706,700 54,730 70,662 87,502 111,706 148,489 24,24 3 30,047,000 59,129,500 134,664,600 166,685,100 120,909,300 78,967,100 70,662 87,502 111,706 148,489 24,24 4 29,508,600 58,129,500 134,664,600 166,685,100 120,909,300 78,967,100 70,662 87,502 111,706 148,489 24,24 24,24 24,24 24,2	2 30,296,300 28,264,100 53,387,500 53,585,800 30,283,400 28,158,900 28,158,900 54,989 72,243 96,032 129,972 205,53 3 30,047,000 59,356,300 109,990,400 118,632,300 75,135,600 54,706/700 87,730 70,662 87,502 111,706 148,489 224,22 4 29,508,600 58,129,500 134,664,600 166,685,100 120,909,300 78,967,100 78,967,100 94,366 111,941 136,292 170,776 249,85		5	18,717,200	41,203,800	85,205,600	127,335,600	110,520,300	85,754,700		5	116,256	130,806	146,401	166,888	204,667	283,01
1 4,667,400 9,915,900 21,059,800 31,202,600 31,202,600 78,958,900 7 13,132 44,267 60,517 80,567 11,438 196,9 2 30,296,300 53,387,500 53,585,800 30,283,400 28,158,900 7 2 63,381 54,989 72,243 96,032 129,972 205,53 3 30,047,000 59,356,300 109,990,400 118,632,300 75,135,600 54,706,700 5 54,730 72,243 96,032 129,972 205,52 4 20,508,600 58,125,500 108,635,100 75,135,600 54,706,700 56,381 74,989 72,243 96,032 129,972 205,52 4 29,508,600 58,126,500 108,638,100 75,135,600 70,662 87,502 111,706 148,489 23,423 6 30,047,000 58,126,500 108,051,100 70,662 87,502 111,706 148,489 24,938 6 30,047,000 58,126,500 108,750 70,66	2 30,296,300 28,564,100 53,387,500 53,585,800 30,283,400 28,158,900 28,158,900 28,158,900 20,553 11,706 129,972 205,53 3 30,047,000 59,356,300 109,990,400 118,632,300 75,135,600 54,706,700 37,562 87,502 111,706 148,489 24,32 4 29,508,600 58,129,500 138,635,600 75,135,600 78,967,100 70,662 87,502 111,706 148,489 24,32 4 29,508,600 58,129,500 120,990,300 78,967,100 78,967,100 70,662 87,502 111,706 148,489 24,36 5 18,717,200 58,129,500 100,520,300 78,967,100 70,562 94,366 111,701 136,292 170,776 249,86 6 18,717,200 41,203,800 10,523,500 10,524,300 85,754,700 85,754,700 10,622 110,611 136,292 170,776 249,86 6 18,717,200 41,203,800 10,523,600 10,52		9	15,906,200	28,612,000	70,197,800	107,982,400	105,258,800	144,429,200		9	191,641	193,324	210,173	236,285	276,270	388,25
1 4,667,400 9,915,900 21,059,800 30,857,100 31,202,600 78,958,900 78,958,900 78,958,900 78,958,900 78,1325 44,267 60,517 80,567 111,438 16,63 2 30,296,300 53,387,500 53,585,800 30,283,400 28,158,900 28,158,900 72,43 60,537 80,532 105,972 205,5 3 30,047,000 59,356,300 198,632,300 30,5135,600 58,1735,600 58,1706,700 54,706,700 54,706,700 70,662 87,502 111,706 148,489 24,242 4 2 29,508,600 58,129,500 108,632,100 78,967,100 70,662 94,366 111,706 148,489 24,242 5 18,717,200 41,203,800 105,25600 101,520,300 78,967,100 70,662 94,366 110,716 148,489 24,242 6 18,717,200 41,203,800 105,25600 101,520,300 78,967,100 70,662 94,366 170,776 28,30 70,670 70,77	2 30,296,300 28,264,100 53,387,500 53,585,800 30,283,400 28,158,900 4 2 63,381 54,989 72,243 96,032 129,972 205,53 3 30,047,000 59,356,300 118,632,300 75,135,600 54,706,700 54,730 70,662 87,502 111,706 148,489 24,320 4 29,508,600 58,129,500 116,685,100 75,135,600 78,967,100 78,967,100 78,967,100 70,662 87,502 111,706 148,489 24,320 5 18,717,200 58,129,500 18,6685,100 10,520,9300 78,967,100 78,966,20 94,366 111,941 136,292 170,776 24,386 6 18,717,200 41,203,000 75,356,000 10,520,300 85,754,700 76 116,26 136,401 166,882 24,667 24,667 24,676 24,676 6 18,717,200 41,203,800 10,525,8800 85,754,700 85,754,700 166,256 166,216 166,410 166,401									Av	erage In	door Use: 9	5,445 gal/a	cct/yr			

2010	Level	-	7	m	4	2	9
			וטן	iosp	əς		
	9	45,661,000	13,588,400	18,196,000	21,832,600	21,213,100	36,464,100
	5	44,718,600	30,888,200	46,845,800	51,893,500	43,412,000	59,656,700
nter	4	59,565,500	72,243,200	116,394,100	130,550,600	100,825,900	99,802,100
Wi	ß	41,328,400	80,189,400	124,883,600	144,122,200	123,867,300	93,419,600
	2	21,467,400	53,803,700	77,457,200	84,572,000	60,884,600	55,113,700
	-	11,714,800	32,714,000	41,996,300	49,021,900	37,801,900	30,725,700
2010	Level	-	2	m	4	5	9
			ĮDU	osp	əs		

1							
	Level	-	2	m	4	Ŋ	9
	-	32,095	46,567	60,688	84,610	112,077	179,063
וטן	2	41,995	57,916	74,804	99,921	137,281	205,885
iosp	e	63,439	78,637	96,138	122,779	159,339	221,902
əς	4	98,834	114,752	131,498	157,670	198,067	276,362
	5	145,392	161,070	180,302	204,101	249,494	321,411
	9	227,598	249,383	263,154	299,706	357,226	479,791
-	Average l	ndoor Use:	74,130 gal/a	cct/yr (same	line as blue	Baseline)	

Winter

			וטן	IOSD	əς		
	9	41,370,800	14,928,100	33,948,200	54,383,200	60,183,300	197,493,700
	5	25,734,500	23,014,100	54,683,600	93,143,600	125,043,700	196,470,400
nter	4	27,891,600	44,546,800	90,739,800	159,745,200	178,676,600	253,485,400
Wi	ß	21,586,800	44,281,200	94,666,100	143,786,300	154,995,100	179,913,500
	2	11,115,200	27,144,800	52,834,300	79,628,200	84,638,900	80,107,800
	-	6,044,300	17,703,800	34,826,200	43,054,400	39,000,600	37,530,700
2011	Level	-	2	m	4	5	9
			jри	osp	əς		

81,554 110,925 186,355

9

Ś

4

-

2011 Level

Winter

235,751 274,663 318,430 465,787

156,239

119,238

76,130

62,977

ω 4

94,211 107,751

 151,417
 190,868

 196,564
 236,378

291,028 342,283

 137,811
 154,451
 171,835

 220,769
 234,920
 260,744

9

ŝ

Average Indoor Use: 86,688 gal/acct/yr

219,531

99,881 135,377

74,173 94,101 126,572

2 45,001 57,147

> 32,151 41,754

> > 2

-

3 61,677

Ta	ble 7 c	ontinued													
	2012			Wi	inter			•	2012			Win	ter		
	Level	-	2	ĸ	4	5	9		Level	-	2	m	4	S	9
	-	9,877,600	16,017,100	31,210,100	37,247,900	25,818,100	37,379,400		-	30,771	44,866	60,602	82,773	108,937	181,453
Įри	2	26,694,100	42,297,000	61,631,500	50,344,600	22,864,400	11,262,900	וטן	7	39,488	55,875	72,850	98,909	135,292	220,841
osp	m	43,797,100	71,894,600	113,267,000	103,251,400	52,901,000	25,108,000	IOSD	S	59,588	74,890	93,147	119,504	159,822	241,423
əs	4	53,566,100	90,218,500	158,021,200	145,943,400	83,193,700	31,118,900	əs	4	94,975	111,381	128,473	156,256	194,378	272,973
	ŝ	48,899,600	82,167,000	135,471,000	128,993,700	68,942,000	37,105,600		Ŋ	140,921	159,548	177,086	201,238	241,056	334,285
	9	33,059,100	68,129,200	126,606,500	126,310,000	81,294,200	68,068,200		9	220,394	241,593	264,867	289,702	348,902	466,221
								A	verage In	idoor Use: 7	75,355 gal/a	cct/yr			
	2013			Wi	nter				2013			Win	ter		
	Level	-	2	m	4	Ŋ	9		Level	-	2	m	4	Ŋ	9
	-	14,400,900	26,678,900	45,294,100	60,124,200	47,914,500	82,645,500		-	29,754	44,914	59,519	80,273	107,432	199,146
jри	2	29,985,900	49,557,600	78,222,400	79,672,800	46,230,300	31,522,800	וטן	7	39,403	55,620	72,495	96,456	133,614	226,783
osp	m	31,871,100	58,116,100	107,236,700	126,380,500	83,996,100	53,928,300	iosp	m	58,694	73,939	91,033	116,372	153,278	228,510
əs	4	24,881,300	50,992,100	97,072,500	130,092,700	107,181,000	64,924,700	οg	4	89,501	104,066	121,189	148,508	184,477	268,284
	ŝ	17,296,800	29,781,600	67,667,200	92,881,600	82,806,100	57,714,500		S	131,036	146,707	165,851	188,784	223,197	300,596
	9	5,050,700	18,129,200	38,515,200	54,879,000	55,328,300	74,695,100		9	202,028	213,285	239,225	265,116	309,097	410,413
								A	verage In	idoor Use: 8	38,710 gal/a	cct/yr			
Tak	ble 8. A	iggregate Us	e and Avera	ge Annual Us	e per Account	t (gallons) fo	r residential a	accou	ints in	Table 6.					
Ľ	eatma	pping (graan	ent color sch	neme) proviat	es a visual rep	oresentation	or Iow (green,	in o ni	gn (rea) water u	se totals i	in each ca	regory		
				Aggregate U. Wir	se 2009–2013 nter					Ave	erage Ann	ual Use pe Win	er Account ter	t 2009–20	13
	Level	-	2	£	4	Ŋ	9	_	Level	-	2	m	4	Ŋ	9
	-	46,705,000	85,194,500	160,479,200	215,686,300	175,388,300	286,015,600		-	31,219	45,123	60,600	81,955	110,162	188,584
Įри	2	137,394,100	201,067,200	317,712,000	300,393,200	153,280,400	99,461,100	jpu	2	45,204	56,309	73,313	98,240	134,307	215,716
ospa	e	182,537,700	319,658,500	550,043,800	555,398,100	313,562,100	185,887,200	IOSD	m	59,886	74,852	92,384	117,920	155,433	230,359
əs	4	200,032,300	363,540,300	677,666,800	733,017,000	456,321,100	251,226,500	əς	4	91,629	106,463	123,935	150,029	187,713	268,435
	Ŋ	161,716,100	298,675,900	567,206,200	628,713,400	430,724,100	261,971,200		S	134,283	150,516	168,295	191,515	230,958	311,548

 6
 212,486
 226,501
 247,633
 276,367
 326,755
 442,092

 Baseline Indoor Use = 2.96 pphh*60 gpcd*365 d/yr = 64,824 gal/acct/year

 6
 122,272,400
 250,091,900
 508,652,600
 642,458,900
 498,008,400
 521,150,300

18

Recommendations

Frequency of analysis

The utility or utility conservation program should conduct a utility customer characterization on a regular basis. Annual customer characterizations produce more accurate and informative water-usage trends within different customer categories. Managers will become familiar with normal usage trends and better able to recognize anomalous and consistent high-usage levels. An annual program evaluation process also helps managers target BMPs accordingly and recognize when specific BMPs are no longer needed among different groups.

Outliers, or customers with significantly higher annual usage than other similar users in their category, may be apparent and indicate the need for inquiry. If a customer has a significant increase in annual usage, an examination would benefit both the customer and the utility. If customers have unusually high usage as a result of inefficient practices, the utility has an opportunity to work with that user to identify ways to reduce water use.

Computer analysis

BMP selection

analysis within information technology and GIS departments. Technicians trained in data manipulation and analysis may be able to prepare and sort data sets more efficiently, and present them in a way that is useful to managers who make decisions about conservation programming.

Where utility and conservation managers benefit from

looking at data trends, they may also benefit from computer

After identifying the characteristics of high-consumption users, the utility chooses which BMPs to promote. For conservation programs for residential customers, separate indoor and outdoor programs, focusing more on indoor programs. Often, it is easier for customers to make changes to fixtures and appliances inside the home rather than change their water-use behavior.

For example, it is common for utilities to adopt toilet replacement programs early in the planning process because replacing older, high-flow toilets with low-flow toilets saves a considerable amount of water. However, the Energy Policy Act of 1992 passed national efficiency standards stating that toilets may not be installed in new development if they do not meet a 1.6 gallon per flush or less requirement. As a result, manufacturers no longer produce toilets with flow rates higher than 1.6 gallons per flush, and all development must meet this stan-

	dard. So, the customer characterization process is important in identifying whether or not a toilet replacement program would result in water savings at a reasonable cost to the utility.
National efficiency standards and specifications	Along with standards for water use in toilet fixtures, the Alliance for Water Efficiency publishes an updated matrix that outlines efficient standards for all residential and commercial fixtures and appliances in terms of the Energy Policy Act of 1992, the U.S. Environmental Protection Agency WaterSense program, and the Consortium for Energy Efficiency.
North American Industrial Classification System (NAICS)	As mentioned in Phase II: Prepare Data, the NAICS is a helpful way to standardize the categorization of nonresiden- tial customers. In 2015, the City of Garland, Texas identified an existing, unused field within their billing system that they used to input the six-digit NAICS code for each nonresidential customer. This standardization will make it easier and faster for the utility to create a consistent customer characterization.
Program evaluation	In addition to an annual customer characterization, the best way to ensure that chosen conservation BMPs continue to reduce water use and target the correct audience is to conduct BMP evaluations before and after implementation. Consis- tent program evaluations indicate when a BMP is no longer producing a significant amount of water savings and gives the utility an opportunity to make adjustments.
Maintain relationships	Successful water conservation planning requires a cooper- ative culture from all groups of home and business owners in the utility service area. Maintaining positive relationships with local landscape companies, building-management companies, and homeowners associations establishes buy-in for conserva- tion programs and positively promotes associated BMPs.
Transient populations	In water conservation planning, it helps to be aware that transient populations such as customers affiliated with a large military or higher education presence make implementing conservation efforts a challenge. Transient populations have a higher turnover of customers who are sometimes new to the

	geographic region and unfamiliar with existing conservation efforts. As a result, transient populations require more educa- tion and outreach programs.
Conclusion	Adopting the customer characterization process makes targeted conservation programming easier and quicker. This familiarity with the customer base allows the utility to leverage available resources to their fullest potential, realize the greatest water savings at the least cost, and achieve conservation goals.
References	 Alliance for Water Efficiency, Koeller and Co. (2014). National Efficiency Standards and Specifications for Residential and Commercial Water-Using Fixtures and Appliances. Retrieved December 2014, from Alliance for Water Efficiency. Standards & Codes for Water Efficiency: http://www.allianceforwaterefficiency.org/Codes_and_ Standards_Home_Page.aspx. Brehe, T. A., and Coll, E. (2012). "A Disruptive Innovation That Will Transform Water Conservation Performance." American Water Works Association, 104(10), 60–63. Kluge, K. (2015). Utility Evaluation for Conservation Planning. Retrieved from The Texas Water Conservation Series: http://www.tawwa.org/?page=2015watercon. Morales, M. A., and Heaney, J. P. (2014). "Classification, Benchmarking, and Hydroeconomic Modeling of Nonresidential Water Users." American Water Works Association, 106(12), E550-560. Research Foundation and American Water Works Association. (1999). Residential End Uses of Water. Denver: AWWA. U.S. Census Bureau. (2010). Community Facts. Retrieved November 2014, from American FactFinder: https:// factfinder2.census.gov/faces/nav/jsf/pages/index.xhtml. U.S. Census Bureau. (2017). North American Industry Classi- fication System. Retrieved March 2017, from United States Census Bureau: https://www.census.gov/eos/www/naics/. U.S. Census Bureau. (2015). QuickFacts Beta. Retrieved

February 2015, from United States Census Bureau: https:// www.census.gov/quickfacts/table/PST045214/00. Vickers, A., Tiger, M. W., and Eskaf, S. (2013). *A Guide to*

Customer Water-Use Indicators for Conservation and Financial Planning. American Water Works Association.

Texas A&M AgriLife Extension Service

AgriLifeExtension.tamu.edu

More Extension publications can be found at AgriLifeBookstore.org

Texas A&M AgriLife Extension provides equal opportunities in its programs and employment to all persons, regardless of race, color, sex, religion, national origin, disability, age, genetic information, veteran status, sexual orientation, or gender identity.

The Texas A&M University System, U.S. Department of Agriculture, and the County Commissioners Courts of Texas Cooperating.